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Outline

• Introduction
• Background
• Pre-detonation nuclear forensics
• Post-detonation nuclear forensics 
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Introduction
• B.S. Chemistry from UMass 

Amherst 
– Bio-inorganic synthesis

• 2010 Radiochemistry Fuel 
Cycle Summer School at 
UNLV
– Radiochemistry course with an 

emphasis on the nuclear fuel 
cycle

• 2011 ACS Summer School in 
Nuclear and Radiochemistry
– Brookhaven National Lab
– Focus on nuclear medicine 

and nuclear fuel 

• Ph.D. from UNLV in 
Radiochemistry
– Dr. Ken Czerwinski
– Synthetic actinide chemistry
– Nuclear forensics

• At LANL since 2014
– Dr. Jaqueline Kiplinger

• Organoactinide synthesis
• Air sensitive materials, 

glove-box work
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Introduction
• Postdoctoral Work

– Dr. Marianne Wilkerson
• Analysis of fuel precursors

– Dr. Sam Clegg
• Gas FTIR analysis of stable 

isotopes of nitrogen
– Dr. Keri Campbell and Dan 

Kelly 
• Uranium corrosion 

• Funding
– DHS NTNFC
– LANL LDRD

• Large groups (>15 people)
• Small groups (<5 people)
• Mentor to high-school 

student
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Background – Nuclear Forensics

• Nuclear forensics – the evaluation of signatures 
to determine the identification and provenance of 
nuclear material
– Device, precursor materials, fuel, isotopic 

signatures
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Part 1 – Pre-Detonation Forensics
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Pre-Detonation Forensics

http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/nuclear-fuel-cycle-overview.aspx

• Ammonium diuranate (ADU) and
ammonium uranyl carbonate 
(AUC)
are both present in multiple steps 
of the fuel cycle
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ADU – Ammonium Diuranate
UO2

2+ + NH4OH + HNO3  UO3·zNH3·xH2O + NH4NO3

STIR RATE 
(RPM) [U] (MG/ML) FINAL PH FLOW RATE 

(ML/MIN) TEMP (°C)

170 50 5 2.5 21.5

280 100 8 5 35

400 200 11 7.5 50

Statistical methods were used to go from 120 possible
combinations to 22 experiments that would give the
most diverse data set
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ADU Characterization – Color

Dorhout, et.al 2020 JNM, Submitted.

The Munsell Color Chart was used to define the colors
of each compound based on hue (color), value
(lightness), and chroma (purity).
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ADU Characterization - pXRD
• Powder XRD was used to 

identify the phases present 
in the materials

• One uranium containing 
phase: UO3·zNH3·xH2O

(ICDD PDF No. 00-014-0340)
• Majority of compounds 

also show NH4NO3
(asterisks) 

• Only two compounds, 3 
and 16, did not contain 
NH4NO3 by XRD

4

16
Dorhout, et.al 2020 JNM, Submitted.
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ADU Characterization – TGA/DSC

• TGA (green) shows 
weight loss as a 
function of 
temperature

• DSC (blue) shows 
endo- and exo-
thermal events

NH4NO3 decomposition 

NH3 and H2O loss

Dorhout, et.al 2020 JNM, Submitted.
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ADU Characterization –
TGA/DSCCOMPOUND # WEIGHT LOSS OF 

NH4NO3 (%)
1 9.82
2 19.00
3 4.90
4 19.41
5 35.39
6 28.22
7 11.94
8 26.01
9 28.77
10 21.53
11 17.41
12 21.24
13 26.12
14 12.09
15 18.72
16 4.88
17 20.70
18 20.40
19 30.86
20 23.11
21 17.68
22 25.02

Dorhout, et.al 2020 JNM, Submitted.
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ADU Characterization – TGA/DSC

• Appears to be a correlation between the amount 
of NH4NO3 present and the color of the 
compound

• Light-colored compounds had high stir rates and 
often high concentrations of uranium

• Dark-colored compounds has high pH (i.e. more 
NH4OH added) and low stir rates or uranium 
concentrations
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ADU Characterization - SEM Analysis

Compounds 5 and 9 
had some of the highest 
concentrations of 
NH4NO3 (35.39 and 
28.77 %)

Compound 1 had 
one of the lowest 
concentrations of 
NH4NO3 (9.82 %)

Compounds 7 and 
12 were middle of 
the road (11.94 and 
21.24 %)
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ADU Characterization – Particle Size
COMPOUND MEDIAN DIAM. (UM)

LIGHT-SCATTER

MEAN DIAM. 
(UM)

LIGHT-
SCATTER

1 4.834 4.741
2 3.746 3.818
3 2.2096 2.5062
4 2.6634 2.7756
5 2.1327 2.5772
6 8.1335 8.8301
7 4.3511 5.42
8 8.1135 8.513
9 11.867 12.657

10 3.7846 3.5019
11 1.5347 2.0429
12 3.7554 4.2099
13 2.8813 3.1654
14 2.5918 2.721
15 5.7682 5.8666
16 2.7171 2.6922
17 2.6574 2.6791
18 4.134 4.3449
19 4.923 5.338
20 2.698 2.677
21 3.153 3.163
22 2.975 3.017

Compound 4

Compound 7

• In general, lighter colored compounds (4, 11, 
16) have smaller particle sizes

• Darker compounds (9, 19) are larger
• Caveat – each sample was ground with a 

mortar and pestle prior to analysis 
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ADU Characterization - MAMA
• Morphological Analysis for Materials Attribution (MAMA) is a software

designed at LANL for the purposes of analyzing morphological features of
materials in SEM images

• MAMA measures 14 attributes, including pixel area, circularity, and ellipse
aspect ratio
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ADU Characterization - MAMA
• Compounds 1-18 were analyzed and the data was used to build

a model to predict MAMA results for Compounds 19-22
COMPOUND # 19 20 21 22

AVG. MINOR ELLIPSE 2.41±1.62 2.50±2.39 2.65±2.54 2.41±1.67
PREDICTED MINOR ELLIPSE 

RANGE 0.120 – 1.08 0 – 0.811 0.530 – 1.35 0 – 0.671

AVG. DIAMETER ASPECT RATIO 
(DAR) 1.61±0.64 1.55±1.34 1.54±1.04 1.63±0.54

PREDICTED DAR RANGE 0.952 – 1.66 1.15 – 1.92 1.16 – 1.77 1.10 – 1.75
AVG. 

CIRCULARITY 0.607±0.23 0.644±0.247 0.650±0.236 0.658±0.375

PREDICTED CIRCULARITY 
RANGE 0.485 – 0.654 0.486 – 0.6856 0.5391 – 0.6936 0.514 – 0.6887

AVG. AREA CONVEXITY 0.867±0.13 0.906±0.099 0.906±0.122 0.913±0.082
PREDICTED AREA CONVEXITY 0.847 – 0.933 0.805 – 0.906 0.861 – 0.944 0.830 – 0.920
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AUC – Ammonium Uranyl Carbonate
UO2

2+ + (NH4)2CO3 + HNO3  (NH4)4UO2·zCO3·xH2O + yNH4NO3

[U] 
(mg/mL)

CO3/U 

Ratio
Stir Rate 

(rpm)
Addn. Rate 
(mL/min)

Temp 
(°C)

50 3.5 170 2.5 21

75 4.25 280 5 35

100 5.0 400 7.5 50

• Synthetic method similar to ADU
• Statistical model used to choose 31

materials to get the most diverse
data set

• Complete data set contains 29
independent materials and 2 sets of
repeated conditions
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AUC Characterization - Color
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AUC Characterization - pXRD
• XRD patterns show four distinct uranium phases in the 

data set
• 25 compounds

contain NH4NO3
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AUC Characterization – TGA/DSC

Compound 3 - AUCH Compound 4 – AUC; no NH4NO3
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AUC Characterization – TGA/DSC
Compound %NH4NO3 Color (Hue 

Value/Chroma)
CO3/U 
ratio

Type

1 7.02 5Y 8/8 3.5 Am
2 6.7 5Y 8/8 5 Am
3 12.39 5Y 8/8 3.5 AUCH
4 0 5Y 8/6 5 AUC
5 17.84 10YR 8/8 4.25 AUCH
6 8.53 2.5Y 8/8 3.5 Am
7 26.55 10YR 8/8 3.5 Am
8 28.56 10YR 8/8 5 AUCH
9 11.02 5Y 8/8 4.25 AUC
10 10.19 10YR 8/8 3.5 AUCH
11 27.82 10YR 8/8 5 Am
12 7.46 5Y 8/8 4.25 AUC/

AUCH
13 22.46 10YR 8/8 3.5 AUCH
14 13.76 2.5Y 8/8 5 AUCH
15 11.85 2.5Y 8/8 3.5 Am
16 21.42 10YR 8/8 4.25 Am
17 20.33 10YR 8/8 4.25 Am
18 22.51 10YR 8/8 5 Am
19 24.23 10YR 8/8 5 Am
20 16.95 10YR 8/8 4.25 Am
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AUC Characterization - SEM

Compound 3 – AUCH
12.39% NH4NO3

Compound 4 – AUC
0% NH4NO3

Compound 6 – Amorphous
8.53% NH4NO3

Compound 24 – AUO
TBD
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AUC Characterization - MAMA

Compound 13 – AUCH with 22.46% NH4NO3
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ADU and AUC Conclusions
• ADU and AUC are precursors to UO2 fuel and could be interdicted
• Correlations between synthetic conditions and physical, chemical, and

morphological characteristics could help identify provenance of stolen
material

• It appears that there is no straightforward correlation, however several
reaction conditions together seem to lead to changes
– Morphology, NH4NO3 concentration, color

• Statistical models can help us predict measured attributes from MAMA
based on combinations of reaction conditions
– Model has limitations and potential bias
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Part 2 – Post-detonation Forensics
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Post-detonation Forensics 
• Major component of 

post-detonation 
analysis is looking at 
fission yields

• Yields, particularly for 
higher mass numbers, 
can help identify the 
type of device

Prelas, M. A.; Weaver, C. L.; Watermann, M. L.; Lukosi, E. D.; Schott, R. J.; 
Wisniewski, D. A. Progress in Nuclear Energy 2014, 75, 117.
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Goal

• Goal: To create actinide target materials for the
rapid separation of fission products without the
need to dissolve the entire target
– Proof-of-principle to advance the library of fission 

product ratios for various actinides
• Procedure: To prepare and irradiate a target

material, then rapidly separate and measure the
fission products
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UO2 Fuel

• UO2 has been used in fuel, target materials, and 
fission product analysis for decades
– Literature references site these particle sizes 

between 20 µm and 200 mm
• Dissolution of materials is generally done in 

HNO3 and/or HCl at acid concentrations > 1M
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UO2 Production – A Novel Method

• Hydrothermal synthesis

UO2(NO3)2 +
180 °C

H2O
UO2

3

Blakemore, P.; Oregon State University: Corvallis, Oregon, 2017; Vol. 2017, p image of parr
bomb.
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UO2

Dorhout et.al JRNC, 2019, 319, 1291. 
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UO2 Target Production

• KBr chosen as a secondary matrix to trap fission 
products (3:1 KBr:UO2 by mass)

• Targets were 25 mg dUO2

• Pressed into a 6 mm pellet
• Sealed in Al sample holder

Dorhout et.al JRNC, 2019, 319, 1291. 
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UO2 Irradiation

• Flattop is a critical assembly device made of 
HEU at the Nevada National Security Site

Brewer, R. W.; McLaughlin, T. P.; Dean, V. 
Uranium-235 Sphere Reflected by Normal 
Uranium Using Flattop, Nuclear Energy Agency, 
1999.
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Rapid Separation

SolidLiquid

Target

Count
Count

Fresh 
Acid

Aliqu
ot

Aliquot

Aliquot

% 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒄𝒄𝒕𝒕𝒄𝒄𝒄𝒄𝒕𝒕𝒄𝒄 𝒊𝒊𝒄𝒄 𝒕𝒕𝒕𝒕𝒕𝒕 𝒕𝒕𝒊𝒊𝒍𝒍𝒄𝒄𝒊𝒊𝒍𝒍 𝒄𝒄𝒕𝒕𝒔𝒔𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒄𝒄𝒕𝒕𝒄𝒄𝒄𝒄𝒕𝒕𝒄𝒄 𝒊𝒊𝒄𝒄 𝒕𝒕𝒐𝒐𝒊𝒊𝒐𝒐𝒊𝒊𝒄𝒄𝒕𝒕𝒕𝒕 𝒕𝒕𝒊𝒊𝒍𝒍𝒄𝒄𝒊𝒊𝒍𝒍 + 𝒕𝒕𝒐𝒐𝒊𝒊𝒐𝒐𝒊𝒊𝒄𝒄𝒕𝒕𝒕𝒕 𝒄𝒄𝒕𝒕𝒕𝒕𝒊𝒊𝒍𝒍 𝒄𝒄𝒕𝒕𝒔𝒔𝒔𝒔𝒕𝒕𝒔𝒔𝒄𝒄
∗ 100
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Rapid Separation
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Gamma Counting
 HPGe and BEGe

detectors used in 
experiments
 Each sample (plus a 

background) was 
counted for the same 
amount of time
 Down-side: only gamma

emitting isotopes are 
identifiable
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Results – Flattop
• Irradiations done on multiple samples
• Five UO2 samples studied

– Four samples of 3KBr:UO2
• Each contacted with a different acid

– 0.01 M HCl, 0.1 M HCl, 0.01 M HNO3, or 0.1 M HNO3

– One sample with no KBr present
• How important is secondary matrix?
• Contacted with 0.01 M HNO3
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Results

• Each target able to allow for extraction of a wide 
variety of fission products

• 0.1 M HNO3 data is artificially high

• Black bars represent no KBr – secondary matrix 
does have an affect

Dorhout et.al JRNC, 2019, 319, 1291. 
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Issues
• KBr is easy to work with and remove with dilute acid, but 

it is activated in the neutron flux to give 82Br
– Many gamma energies 
– Short half-life, high activity
– Could be resolved by using a different secondary matrix

• Targets were irradiated at different times under different 
conditions
– Cannot compare activities extracted
– Must compare percent extraction 
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Conclusions
• Proof-of-concept shown

• 0.01 M HNO3 chosen as extractant for all future 
experiments

• Secondary matrix does seem to have a positive affect on 
extraction 

• Different secondary matrix could make analysis easier
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